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Abstract

The linear stability analysis is applied to a horizontal porous layer saturated with water in the neighborhood of 4 �C.
The porous layer considered is two-dimensional and anisotropic in permeability with principal axes arbitrarily oriented.

The onset of convection depends on parameters such as the aspect ratio A, the permeability ratio K�, the orientation

angle, h of the principal axes and the inversion parameter, c. The relevant linearized equations are solved with the aid of
Galerkin and finite element methods. Results for the case of an infinite layer indicate that the presence of a stable layer

near the upper boundary for c < 2 changes drastically the critical Rayleigh number and that an asymptotic situation is

reached when c6 1. For that asymptotic situation, and with h ¼ 0� or 90�, the incipient flow field consists of primary

convective cells near the lower boundary with superposed layers of secondary cells. For 0� < h < 90�, primary and
secondary cells coalesce to form obliquely elongated cells.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

A limited number of studies was devoted in the past

to the instability of a horizontal anisotropic porous layer

saturated by cold water. For this situation, the relation

between the density of the fluid and the temperature is

nonlinear and the density of the fluid reaches a maxi-

mum value.

The onset of convection of cold water has been

considered in the past by Veronis [1] and later by

Musman [2] and Moore and Weiss [3]. When the 4 �C
isotherm lies between the upper and lower boundaries,

there exists in pure conduction an upper stable layer

superposed to a lower unstable one. In their studies,

these authors have used a Rayleigh number based on the

depth of the unstable layer and on the difference of

density across that layer. Other publications such

as those of Poulikakos [4] and more recently, Mamou

et al. [5] concern the instability of an isotropic porous

medium saturated with cold water. The instability of

an anisotropic porous layer of infinite extent with arbi-

trary oriented principal axes was investigated analyti-

cally by Tyvand and Storesletten [6] for the classical case

of a linear density–temperature relationship and by

Straughan and Walker [7] for the cold water case. Those

last authors have used both the linear stability and

the nonlinear energy stability analyses in their investi-

gation.

Recently, Mahidjiba et al. [8] studied the effect of

lateral confinement on the threshold of an anisotropic

porous layer with arbitrary oriented principal axes. A

subsequent publication, also by Mahidjiba et al. [9],

deals with the anisotropic porous layer of infinite ex-

tent saturated by cold water, the principal axes being

limited to horizontal/vertical orientations. The present

paper concerns the anisotropic porous layer saturated

with cold water with arbitrary orientation of the

principal axes. The effect of confinement is also con-

sidered.
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2. Mathematical formulation

The problem under consideration is illustrated in Fig.

1. It consists of a two-dimensional horizontal porous

layer, anisotropic in permeability, with principal axes

defined by extremum permeabilities K1 and K2 arbitrary

oriented, according to the angle h. Uniform tempera-

tures T 0
L and T 0

U are imposed on the horizontal bound-

aries. The two vertical boundaries are subject either to

adiabatic or periodic conditions (those last conditions to

be defined later), according to the type of layer (confined

or unconfined) considered. When, T 0
max the temperature

corresponding to the maximum density of water, is be-

tween T 0
L and T 0

U, a pure conduction density distribution

takes the form given in Fig. 1. The vertical position of

the maximum density defines a separating line between a

lower unstable region and a superposed stable one. The

saturated porous layer is assumed to follow the Darcy

law. The fluid density varies with temperature according

to a parabolic relationship of the form

Nomenclature

A aspect ratio, L0=H 0

Am modified aspect ratio, Eqs. (7a) and (7b)

H 0 overall height of the layer

h0max height of the unstable layer

k thermal conductivity of the saturated po-

rous medium

K� permeability ratio, K2=K1

L0 width of the porous layer

R Darcy Rayleigh number, K2gb
0DT 02H 0=ðamÞ

Rm modified Darcy Rayleigh number, Eqs. (7a)

and (7b)

t dimensionless time, t0=ðrH 02=aÞ
DT 0 temperature difference based on the overall

depth of the layer, T 0
U � T 0

L

T 0
max temperature corresponding to the density

qmax, ðT 0
max ¼ 4 �C)

ðx; yÞ dimensionless coordinate system, x0=H 0,

y0=H 0

ðu; vÞ dimensionless velocity terms, u0=ða=H 0Þ,
v0=ða=H 0Þ

Greek symbols

a thermal diffusivity, k=ðqmaxCÞf
b thermal expansion coefficient, Eq. (8), �C�2

b1 coefficient, Eq. (1), �C�2

c inversion parameter, 2ðT 0
max � T 0

LÞ=DT 0

h orientation angle

k wavelength

k eigenvalue

r heat capacity ratio, ðqmCÞp=ðqmCÞf
m kinematic viscosity of fluid

q density of fluid

qmax maximum density

ðqmaxCÞf heat capacity of fluid

ðqmaxCÞp heat capacity of saturated porous medium

W dimensionless stream function, W0=a

Subscripts

c critical value at incipient convection

m modified value

Fig. 1. Geometry of the physical problem.
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q ¼ qmaxb1� b1ðT 0 � T 0
maxÞ

2c ð1Þ

with T 0
max ¼ 3:98 �C and b1 ¼ 8	 10�6 �C�2. The re-

sulting relation was found to hold to within 4% over the

range 0–8 �C, according to Moore and Weiss [3].

Using, H 0, a ¼ k=ðqmaxCÞf , a=H 0, t0=ðrH 02=aÞ and

DT 0 ¼ T 0
U � T 0

L as respective scales for length, stream

function, velocity, time and temperature, the dimen-

sionless equations for momentum and energy [8,9] are

a
o2W
ox2

þ b
o2W
oxoy

þ c
o2W
oy2

¼ Rðc � 2T Þ oT
ox

ð2Þ

oT
ot

þ u
oT
ox

þ v
oT
oy

¼ o2T
ox2

þ o2T
oy2

ð3Þ

where a ¼ cos2 h þ K� sin2 h, b ¼ ð1� K�Þ sin 2h and

c ¼ sin2 h þ K� cos2 h and where the stream function W is

related to the velocity by the usual relations u ¼ oW=oy
and v ¼ �oW=ox.

In the above equations, R ¼ K2gb1DT
02H 0=ðmaÞ is the

Rayleigh number, c ¼ 2ðT 0
max � T 0

LÞ=DT 0, the inversion

parameter and K� ¼ K2=K1, the permeability ratio. To-

gether with the aspect ratio A ¼ L0=H 0 and the orienta-

tion angle h defined in Fig. 1, they are the governing

parameters of the present problem.

For the interpretation of the results, it is more ap-

propriate to used a modified Rayleigh number Rm and a

modified aspect ratio Am, both based on the depth h0max
of the unstable layer and on the difference of density

Dqm across that layer. Thus the physical definition of the
Rayleigh number remains the same,

Rm ¼ K2g
am

Dqm
qmax

h0max ð4Þ

although its mathematical expression changes, accord-

ing to the vertical position of the maximum density in

pure conduction. For the maximum density between the

two horizontal boundaries (0 < c6 2), we have

h0max ¼ H 0ðc=2Þ
Dqm
qmax

¼ qmax � qL
qmax

¼ b1ðT 0
max � T 0

LÞ
2 ¼ b1½ðc=2ÞDT 0�2

ð5Þ

For the maximum density above the upper boundary

c P 2, we have

h0max ¼ H 0

Dqm
qmax

¼ qU � qL
qmax

¼ � qmax � qU
qmax

þ qmax � qL
qmax

ð6Þ

Eqs. (5) and (6) are used to define a modified Rayleigh

number and a modified aspect ratio as

0 < c6 2 Rm ¼ Rðc=2Þ3 Am ¼ Aðc=2Þ�1 ð7aÞ

c P 2 Rm ¼ Rðc � 1Þ Am ¼ A ð7bÞ

On one hand, with c  2, the quadratic term in T of

Eq. (2) becomes negligible and, since the thermal ex-

pansion coefficient b used in linear convection is related

to b1 according to b ¼ 2b1ðT 0 � T 0
maxÞ (see [10]), we ob-

tain

Rm � Rc ¼ K2gb1DT
02

ma
ðT 0

max � T 0
LÞH 0

¼ �K2gbDT 0

ma
H 0 ¼ �Rl ð8Þ

Rl being the standard Rayleigh number for linear con-

vection. Eq. (8) represents one of the asymptotic limits

of the results to be presented. On the other hand, there

exists also, as it will be shown, another asymptotic limit

for c6 1, for which the (modified) Rayleigh number, as

defined in (7a), remains constant. It is to be noted that

both definitions of given in (7a) and (7b) coincide when

c ¼ 2.

On all solid boundaries, hydrodynamic boundary

conditions are W ¼ 0, while the thermal boundary con-

ditions are

x ¼ �A=2 oT=ox ¼ 0

y ¼ 1=2 T ¼ 0

y ¼ �1=2 T ¼ 1

ð9Þ

For the infinite layer, where the flow structure con-

sists of periodic counterrotating cells, periodic boundary

conditions in the x-direction are used to study the in-

cipient convection, the aspect ratio A being limited to

one wavelength k. Those periodic conditions are defined
as /ðx; yÞ ¼ /ðxþ kc; yÞ, where u stands for any physical

variable and kc corresponds to the critical wavelength.

3. Linear stability analysis

In the present work, the threshold of convection is

obtained numerically. The method has been described in

the past by Mahidjiba et al. [8,9] and only a brief de-

scription is presented here. The following transforma-

tion is introduced

Wðx; yÞ ¼ WR þ wðx; yÞ and

T ðx; yÞ ¼ TR þ /ðx; yÞ ð10Þ

where WR ¼ 0 and TR ¼ y þ 1=2 correspond to the rest

state and wðx; yÞ and uðx; yÞ are the perturbed solutions
resulting from the convective effects.

Assuming separability, the steady perturbed solution

can be written as follows:

wðx; yÞ ¼ w0F ðx; yÞ and uðx; yÞ ¼ u0Gðx; yÞ ð11Þ

where the amplitudes w0 and /0 are small constants.

Substituting the rest-state solution and the small

perturbations, Eqs. (10) and (11), into the governing
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Eqs. (2) and (3) and discarding the second order terms

involving the perturbations (at the beginning of con-

vection, the amplitude w0 and u0 are close to zero), the

following linearized set of governing equations is ob-

tained:

w0 a
o2

ox2

�
þ b

o2

oxoy
þ c

o2

oy2

�
F ¼ Rf ðyÞ/0

oG
ox

ð12Þ

�w0

oF
ox

¼ /0

o2G
ox2

�
þ o2G

oy2

�
ð13Þ

where f ðyÞ ¼ c � 2y � 1.

The boundary conditions for F are similar to those of

W, except for y ¼ 1=2 where F takes the zero value. G

also follows the boundary conditions for T.

The finite element method is employed to solve the

above set of equations. The details of this method were

already mentioned in the articles by Mahidjiba et al.

[8,9]. After calculation and rearrangement of the terms,

we obtain the following discretized set of linear equations

w0bKwcfF g ¼ Ru0½B�fGg and

w0½L�fF g ¼ u0½K�fGg ð14Þ

where ½B�, bKwc, ½K� and ½L� are m	 m square matrices

with m ¼ 4Nn, Nn being the total number of nodes, de-

fined as Nn ¼ ðNex þ 1ÞðNey þ 1Þ; Nex and Ney are the

numbers of elements in x-direction and y-direction, re-

spectively. The corresponding elementary matrices can

be computed from the following integrals:

½B�e ¼ �
Z

Xe

f ðyÞ oNj

ox
Ni dX

e

½K�e ¼
Z

Xe

rNj � rNi dX
e

½L�e ¼
Z

Xe

oNj

ox
Ni dX

e

½Kw�e ¼
Z

Xe

a
oNj

ox
oNi

ox

�
þ b

oNj

oy
oNi

ox
þ c

oNj

oy
oNi

oy

�
dXe

ð15Þ

where NjðyÞ are either the Lagrange interpolation func-
tions for a quadratic case or the Hermite interpolation

functions for the cubic case; fF g and fGg are solution
vectors of length m.

It is noted that boundary integrals, known as the

natural boundary conditions, vanish for the homoge-

neous Dirichlet and Neumann boundary conditions.

Eliminating u0 from Eq. (14), we obtain the following

eigenvalue problem equation

w0ð½E� � �kk½I �ÞfF g ¼ 0 with ½E� ¼ ½Kw��1½B�½K��1½L�
ð16Þ

where ½I � is the identity matrix; �kk ¼ 1=R represents the

eigenvalue and fF g the eigenvector.

The critical Rayleigh number for the onset of con-

vection is given by RC ¼ 1=�kkmax.

4. Results and discussion

4.1. The limiting case of an infinite layer

The limiting case A ! 1 of the confined layer being

the layer of infinite extent, results for this asymptotic

situation are required to understand the effect of con-

finement and will be first given.

We start with the particular case where principal axes

are in the x and y directions. The critical Rayleigh

number is given in Fig. 2 as a function of the inversion

parameter c for different permeability ratios, K�, the

angle h being maintained at 0�. The scaling factor,

4=ð1þ K�1=2Þ2 reduces to unity for the isotropic case

(K� ¼ 1). With this normalization, results for various

permeability ratios K� collapse toward a unique value

4p2 when c  2. We may notice in Eq. (2) that the

quadratic term in T becomes negligible when c becomes
large and that cR becomes equivalent to the standard

Rayleigh number, as shown in Eq. (8). With c decreasing
below 2.0, a stable layer is formed near the upper

boundary and a drastic decrease in RmC occurs, this

decrease being related to the change in the definition of

Rm, Eqs. (7a) and (7b). With c still decreasing, the con-
straining effect of the upper boundary is gradually re-

duced and becomes practically negligible at c � 1. For

the range 0 < c6 1, RmC remains at the same value

which is much below the one corresponding to classical

convection (c  2). However, for this range, there is no

collapse of the results into a single curve, although all

individual curves corresponding to different K� lie

nearby. Also, it is to be noted that replacing K� by 1=K�

does not change results since both extreme permeabili-

ties K1 and K2 are involved with the same weight in the

definition of the ordinate, 4RmC=ð1þ K�1=2Þ2.
The critical wavelength kmC for h ¼ 0�, which follows

a trend comparable to the critical Rayleigh, is given in

Fig. 2. Infinite layer: critical Rayleigh number RmC function of
c and K� (h ¼ 0�).
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Fig. 3 as a function of c for K� ¼ 1, 0.1 and 0.01. With

the scaling factor, K�1=4, obtained from Tyvand and

Storesletten�s paper [6], the results collapse into a single
curve for c  2. Elsewhere, the results will collapse for

K� and 1=K� (for instance, 0.1 and 10) but otherwise give

rise to slightly different curves, according to a degree of

anisotropy. With c decreasing below 2, kmC encounters a
drastic change and starts increasing suddenly. At c6 1,

the asymptotic behavior is reached for kmC, as it was the
case for RmC. A more detailed discussion of this situation

where principal axes are in the x and y directions may be

found in the article by Mahidjiba et al. [9].

The above discussion is now extended to an arbitrary

orientation of the principal axes. Figs. 4 and 5 show

respectively the critical Rayleigh number RmC and the

critical wavelength kmC, as a function of c and K�, for

h ¼ 45�. At this particular value of h, results for K� and

1=K� again collapse on the same curves since case 1=K�

is the mirror image of case K�. By contrast with Figs. 2

and 3, the asymptotic situation c  2 gives rise to dif-

ferent curves for RmC and kmC according to the degree of
anisotropy. This behavior concerning large c is in

agreement with Tyvand and Storesletten results [6] for

oblique axes.

The effect of h on the incipient flow field at c ¼ 0:5
and K� ¼ 0:1 is shown in Fig. 6. For each h in this figure,

Fig. 3. Infinite layer: critical wavelength kmC function of c and
K� (h ¼ 0�).

Fig. 4. Infinite layer: critical Rayleigh number RmC function of
c and K� (h ¼ 45�).

Fig. 5. Infinite wavelength kmC function of c and K� (h ¼ 45�).

Fig. 6. Infinite layer: effect of the angle h on the incipient flow
(c ¼ 0:5; K� ¼ 0:1).
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one wavelength of the infinite flow field is represented.

For h ¼ 0� and 90�, secondary cells (above) are distinct
from primary convection cells (bottom). For interme-

diate values of h, primary cells coalesce with secondary
cells obliquely located, i.e., having their rotation in the

same direction, with the result that only primary cells of

elongated shape exist. The maximum intensity of motion

within these elongated cells remains located near the

lower boundary and the strength of the cells fades away

in the upper direction.

4.2. The effect of confinement

Fig. 7 shows the influence of the aspect ratio Am on

the critical Rayleigh number RmC for h ¼ 0� (or 90�) and
K� ¼ 0:1. For reasons already mentioned previously

concerning the scaling factor 4=ð1þ K�1=2Þ2 used in the

definition of the ordinate, it is worth recalling that K�

may be changed for its reciprocal value (1=K�) without

changing the value of the ordinate. If in addition, the

scaling factor K�1=4 is used in front of Am, then results for
a given value of K� or its reciprocal will fall on the same

curve, for a given value of c. Thus, curves given in Fig. 7
for c ¼ 1000, 2, 1.8 and 0.5 (or 1) are valid for K� ¼ 0:1
or 10. Finally from the above considerations, it may also

be deduced that the curves of Fig. 7 also stand for

h ¼ 90� provided that the label of the abscissa is chan-

ged for AmK��1=4.

The upper curve c ¼ 1000 in Fig. 7 corresponds

practically to the asymptotic case of a linear density–

temperature relationship already studied by Mahidjiba

et al. [8]. For c ¼ 2, the quadratic dependence in Eq. (1)

introduces a slight discrepancy between curves c ¼ 2 and

1000. For c ¼ 1:8, the reduced influence of the upper

boundary, due to the presence of an upper stable layer,

results in a more pronounced reduction of the critical

Rayleigh number. For c6 1, an asymptotic situation is

reached. As a consequence, results obtained for c ¼ 1

and 0.5 collapse on a single curve. All curves of Fig. 7

reach practically the asymptotic values of an infinite

layer when AmK�1=4 (h ¼ 0�) or AmK��1=4 (h ¼ 90�) is
greater than �5. For instance the curve c ¼ 1:0 (or 0.5)
tends asymptotically to the value 4RmC=ð1þ K�1=2Þ2 �
28:5 given in Fig. 2 for K� ¼ 0:1. As described by Ma-

hidjiba et al. [8], the minima for each of these curves are

located at AmC ¼ nkmC=2 (n being a positive integer) and
RmC takes the value corresponding to an infinite layer.

Elsewhere, the constraint of the vertical walls which

imposes a given wavelength raises the value of RmC. With

increasing Am, maxima (peaks) and minima are found to
succeed one another, the maxima corresponding to the

transition from n to nþ 1 convective cells.

Finally, it should be emphasized that each of the

curves shown in Fig. 7 represents the lowest threshold

beyond which motion occurs. The stability analysis de-

scribed earlier provides other thresholds not represented

on those curves. For instance, the part of the curve

preceding the first peak, on each of the curves, stands for

the threshold beyond which a single convective cell will

appear in the cavity. That part of the curve could be

extrapolated beyond the second peak at higher aspect

ratios where it would still provide the threshold for a

single convective cell. However, for aspect ratios be-

tween the first and second peaks, there exists a lower

threshold corresponding to the occurrence of two con-

vective cells. Fig. 8a and b show an enlarged view of the

first two threshold values around the first peak, as ob-

tained numerically, for c ¼ 0:5 and 1.8 respectively. The
location where the two sets of points cross each other

corresponds to the first peak.

Fig. 8. Confined layer: effect of Am on the two first critical

numbers corresponding to the two highest eigenvalues

(K� ¼ 0:1, h ¼ 0�): (a) c ¼ 0:5 and (b) c ¼ 1:8.

Fig. 7. Confined layer: effect of Am on RmC for various values of

c (h ¼ 0�; K� ¼ 0:1, 10).
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Fig. 9 shows the influence of the aspect ratio on the

critical Rayleigh number for K� ¼ 0:1 and h ¼ 45�. The
same scale factors used for Fig. 7 are used here for

the abscissa and the ordinate. Three curves correspond-

ing to c ¼ 1000, 1.8 and 1.0 (or 0.5) are shown. Notable

differences with Fig. 7 are observed, in particular con-

cerning the two lower curves. We first consider the upper

curve labeled c ¼ 1000 which represents the asymptotic

case of a linear density–temperature relationship. The

behavior of this curve was already discussed in the ar-

ticle by Mahidjiba et al. [8]. The asymptotic limit of an

infinite layer 4RmC=ð1þ K�1=2Þ2 � 35:8 is practically

reached at AmK�1=4 ¼ 5. That limit is slightly below 4p2

and corresponds to the results obtained by Tyvand and

Storesletten [6]. With Am increasing from zero, the first

minima are higher than the asymptotic limit and their

spacing decreases slightly with Am increasing. This be-

havior is in contrast with the upper curve of Fig. 7. It is a

consequence of the additional constraint imposed by the

vertical boundaries when h 6¼ 0� or 90�. The vertical

walls, not only impose a given wavelength, but also

modify the shape of the convective cells adjacent to

them, as illustrated in Fig. 10. Without those walls, i.e.,

for the case of an infinite layer, all the cells are obliquely

elongated and separated by oblique dividing streamlines.

Curves of Fig. 9 labeled c ¼ 1:8 and 1.0 (or 0.5)

contrast with previous curves already described. They

do not show multiple spaced peaks and, apart from

a zcumbersome behavior observed for the range

� 0:7 < AmK�1=4 <� 1:3, in particular for curve c ¼ 1:8,
both curves show a rather monotonous decrease to-

wards the asymptotic value of an infinite layer, with

AmK�1=4 increasing. This unusual behavior has to do

with the particular way by which new convective cells

are introduced in the layer when the aspect ratio is in-

creased. By contrast will previous cases; new convective

cells take place gradually. This particular behavior is

related to the complete loss of symmetry characterizing

the incipient flow fields when c < 2 and h 6¼ 0� (or 90�).
Without the constraints of symmetry, new convective

cells may be inserted smoothly with increasing aspect

ratio. Incipient flow fields related to previous curves

already discussed were subjected to two types of sym-

metry: one associated to c  2 and another one asso-

ciated with h ¼ 0� or 90�. Those two types of symmetry
are now discussed:

• Symmetry with respect to the center of the cavity (cen-

tro-symmetry): in classical convection (q vs T linear),

asymptotically obtained when c  2, both upper and

lower walls exert an equal influence on the incipient

flow field with the result that a symmetry with respect

to the center of the cavity (x ¼ 0 and y ¼ 0 in Fig. 2)

or ‘‘centro-symmetry’’ prevails for any arbitrary h.
This centro-symmetry is of the form

Wð�x;�yÞ ¼ Wðx; yÞ ðodd number of cellsÞ ð17aÞ

Wð�x;�yÞ ¼ �Wðx; yÞ ðeven number of cellsÞ
ð17bÞ

When such a symmetry prevails, the occurrence of a

new convective cell in the flow field necessitates a

drastic rearrangement of all the existing cells, in their

shape and relative strength, as illustrated in Fig. 10a

and b, which shows incipient flow fields on each side

of the second peak of Fig. 9, this peak being located

at AmK�1=4 ¼� 1:22 for c ¼ 1000.

• Symmetry with respect to the vertical axis x ¼ 0 (mir-

ror-image symmetry): For any arbitrary value c, all
flow fields with h ¼ 0� (or 90�) are symmetric with re-
spect to a vertical axis dividing the cavity in two

halves, according to

Fig. 9. Confined layer: effect of Am on RmC for various values of
c (h ¼ 45�, K� ¼ 0:1).

Fig. 10. Occurrence of a new convective cell ‘‘when centro-

symmetry’’ prevails (c ¼ 1000, h ¼ 45� and K� ¼ 0:1): (a)

AmK�1=4 ¼ 1:21 and (b) AmK�1=4 ¼ 1:24.
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Wð�x; yÞ ¼ Wðx; yÞ ðodd number of cellsÞ ð18aÞ

Wð�x; yÞ ¼ �Wðx; yÞ ðeven number of cellsÞ ð18bÞ

With that type of symmetry, all convective cells

must have the same shape and intensity, so that the

addition of a new cell also necessitates a drastic rear-

rangement of the flow field. This last case is illustrated

in Fig. 11 where incipient flow fields are shown on each

side of the second peak of Fig. 7, located at AmK�1=4 �
3:27 for c ¼ 1 (or 0.5).

The constraints associated to symmetries Eqs. (17a),

(17b), (18a) and (18b) produce eigenvalues (or their re-

ciprocal, RmC) of the type shown in Fig. 8, near a given
peak. These constraints do not apply to the two lower

curves of Fig. 9. Fig. 12 gives the evolution, with Am
increasing, of the largest eigenvalues associated with

the peculiar behavior of those curves for the range

� 0:6 < AmK�1=4 <� 1:0. Fig. 13 illustrates the progres-
sive way by which new convective cells are introduced in

the flow field, near the lower boundary, in the absence of

any symmetry.

5. Conclusion

A stability study has been performed for the case of a

horizontal anisotropic porous layer of finite/infinite lat-

eral extent, saturated with water in the presence of the

density extremum at 4 �C. Critical Rayleigh numbers

have been obtained, functions of the aspect ratio, the

permeability ratio, the orientation angle of the principal

axes and the inversion parameter, this last one defining

the vertical position of the density extremum in pure

conduction. Results have been brought to a simple form

by the use of particular definitions of the Rayleigh

number and the aspect ratio, based on the thickness of

the unstable layer and on the difference of temperature

across that layer.

Results concerning the infinite layer, having a density

extremum between the upper and lower boundaries and

with oblique principal axes, reveal that primary con-

vective cells near the lower boundary coalesce with up-

per secondary cells to form obliquely elongated

convective cells evenly distributed. When the layer is

limited by vertical boundaries, the symmetry conditions,

which prevail, either in classical convection or when the

principal axes are vertically/horizontally oriented, dis-

appear when the maximum density lies between the

upper and lower boundaries and the principal axes are

arbitrary oriented. The consequence is a progressive

evolution, without drastic change of the incipient flow

field, with increasing aspect ratio, new cells being in-

Fig. 11. Occurrence of a new convective cell ‘‘when mirror-

image symmetry’’ prevails c ¼ 0:5, (h ¼ 45� and K� ¼ 0:1): (a)

AmK�1=4 ¼ 3:25 and (b) AmK�1=4 ¼ 3:30.

Fig. 12. Confined layer: effect of Am on RmC (K� ¼ 0:1, h ¼ 45�):
(a) c ¼ 0:5 and (b) c ¼ 1:8.
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troduced smoothly, and critical Rayleigh decreasing

monotonously i.e., without multiple peaks, toward the

asymptotic value of an infinite layer.
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